Module Description | Module name | Data Mining | |---|---| | Module level, if applicable | Bachelor of Informatics | | Code, if applicable | 312D4224 | | Subtitle, if applicable | - | | Course, if applicable | | | Semester(s) in which the module is taught | 6 th | | Person responsible for the module | Dr. Indrabayu., ST., MT., M.Bus.Sys | | Lecturer | Dr. Indrabayu., ST., MT., M.Bus.Sys
Dr. Ir. Ingrid Nurtanio, M.T
Elly Warni, ST., MT | | Language | Indonesian Language [Bahasa Indonesia] | | Relation to
Curriculum | This course is a compulsory course for the Cloud Computing and Big Data research group and is offered in the 6 th semester. | | Type of teaching, contact hours | Teaching methods: [group discussion], [case study]. Teaching forms: [lecture], [tutorial], [practicum]. CH: 08.00 - 16.00 | | Workload | For this course, students are required to meet a minimum of 181.33 hours in one semester, which consist of: - 53.33 hours for lecture, - 64 hours for structured assignments, - 64 hours for private study. | | Credit points | 4 credit points (equivalent with 6.8 ECTS) | | Requirements
according to the
examination
regulations | Students must have attended all minimum 80% of classes and submitted all class assignments that are scheduled before the final tests. | |--|---| | Recommended prerequisites | Artificial Intelligence | | Module
objectives/intended
learning outcomes | After completing the course, Students are able: | | | Intended Learning Outcome (ILO): | | | ILO 2 : Have the knowledge of advanced topics in Informatics specific | | | fields of either Artificial Intelligence, Data Science, Computer Network, | | | Cloud Computing, or Internet of Things. | | | ILO 3: Apply the knowledge of computing and other related | | | disciplines to analyze and identify solutions for any computing-based | | | problem. | | | ILO 7 : Communicate their ideas in a convincing and effective manner, | | | either in written or orally, to propose solutions. | | | Course Learning Objectives (CLO): | | | After attending the Data Mining Course for 1 (one) semester, students | | | have the knowledge of data mining, architecture, models, processes of | | | data mining, preprocess data and linear and non-linear regression | | | algorithms, classification, clustering, association and apply the | | | knowledge to complete data mining case studies. | | | CLO 1: Students have the knowledge of data mining, architecture, | | | models, processes of data mining, preprocess data and linear and | | | non-linear regression algorithms, classification, clustering and | | | association. | | | CLO 2: Students can apply the knowledge of data mining case studies | | | (regression, classification, clustering, association). | | | CLO 3: Students present data mining case studies and understand new | |---|--| | | directions of research and conduct data mining research. | | Content | Students will learn about: 1. The basic concept of Data Mining 2. Data Mining Architecture, Model and Process 3. Data Preparation 4. Linear and non-linear regression 5. Classification 6. Clustering 7. Association 8. Data Mining Case Study | | Forms of
Assessment | Assessment techniques: [observation], [participation], [written test]. Assessment forms: [quiz], [midterm exam], [assignment], [presentation]. Quiz = 15%, Midterm exam = 25%, Assignment = 30%, Presentation = 30% CLO 1 => ILO 2: 40% (Quiz and Mid term exam: written test) CLO 2 => ILO 3: 30% (Assignment: participation) CLO 3 => ILO 7: 30% (Presentation: observation) | | Study and examination requirements and forms of examination | Study and examination requirements: Students must attend 15 minutes before the class starts. Students must switch off all electronic devices. Students must inform the lecturer if they will not attend the class due to sickness, etc. Students must submit all class assignments before the deadline. Students must attend the exam to get a final grade. Form of examination: Written test | | Media employed | Video conference, slide presentation, Learning Management System (LMS) | | Reading list | Main: | 3. Daniel T. Larose, Discovering Knowledge in Data: an Introduction to Data Mining, *John Wiley & Sons*, 2005